PREDIKSI HARGA MATERIAL KONSTRUKSI DI INDONESIA DENGAN MENGGUNAKAN LEAST SQUARES SUPPORT VECTOR MACHINE

نویسندگان

چکیده

Prediksi harga material konstruksi menjadi salah satu metode untuk membantu perkembangan dunia di Indonesia. Sebanyak 85% dari total biaya merupakan material, sedangkan sisanya alat dan tenaga kerja. Material sering kali berkaitan dengan makroekonomi maupun komoditas baik secara nasional internasional. dilakukan menggunakan Least Squares Support Vector Machine (LS-SVM) variabel input berupa data komoditas, serta output Indeks Harga Perdangan Besar Hasil penerapan LS-SVM kedalam prediksi menunjukkan hasil nilai error yang rendah. semen Mean Absolute Percentage Error sebesar 0.624% hingga 0.962%, logam besi baja 0.676% 0.853%. Korelasi beton juga yaitu 0.981 0.996 kedua tersebut. Secara keseluruhan, diusulkan dalam penelitian ini karena menghasilkan akurat.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Least Squares Support Vector Machine for Constitutive Modeling of Clay

Constitutive modeling of clay is an important research in geotechnical engineering. It is difficult to use precise mathematical expressions to approximate stress-strain relationship of clay. Artificial neural network (ANN) and support vector machine (SVM) have been successfully used in constitutive modeling of clay. However, generalization ability of ANN has some limitations, and application of...

متن کامل

Sparse least squares Support Vector Machine classifiers

In least squares support vector machine (LS-SVM) classi-ers the original SVM formulation of Vapnik is modiied by considering equalit y constraints within a form of ridge regression instead of inequality constraints. As a result the solution follows from solving a set of linear equations instead of a quadratic programming problem. Ho wever, a d r a wback is that sparseness is lost in the LS-SVM ...

متن کامل

Sparse Least Squares Support Vector Machine Classiiers

In least squares support vector machine (LS-SVM) classi-ers the original SVM formulation of Vapnik is modiied by considering equality constraints within a form of ridge regression instead of inequality constraints. As a result the solution follows from solving a set of linear equations instead of a quadratic programming problem. However, a drawback is that sparseness is lost in the LS-SVM case ...

متن کامل

Multiclass Least Squares Twin Support Vector Machine for Pattern Classification

This paper proposes a Multiclass Least Squares Twin Support Vector Machine (MLSTSVM) classifier for multi-class classification problems. The formulation of MLSTSVM is obtained by extending the formulation of recently proposed binary Least Squares Twin Support Vector Machine (LSTSVM) classifier. For M-class classification problem, the proposed classifier seeks M-non parallel hyper-planes, one fo...

متن کامل

A Weighted Least Squares Twin Support Vector Machine

Least squares twin support vector machine (LS-TSVM) aims at resolving a pair of smaller-sized quadratic programming problems (QPPs) instead of a single large one as in the conventional least squares support vector machine (LS-SVM), which makes the learning speed of LS-TSVM faster than that of LS-SVM. However, same penalties are given to the negative samples when constructing the hyper-plane for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Dimensi Utama Teknik Sipil

سال: 2023

ISSN: ['2656-3312']

DOI: https://doi.org/10.9744/duts.10.1.104-119